Chapter 5 and 6

Independence, Basis, and Dimension

Section 4:

(book sections 5.2, 6.3 and 6.4)

Ideas in this section...

- Every vector space / subspace is the span of some collection of vectors (we'll focus on the ones where the spanning set is finite)
- Given a vector space, we want to find the least amount of vectors possible that will span it
- This smallest number is unique and is called the dimension of the vector space
- A minimal collection of vectors that spans a vector space is called a basis of the vector space
- If a collection of vectors spans a subspace *U*, we can narrow it down to a basis of *U*
- If a collection of vectors in a subspace U is linearly independent, we can extend it to a basis of U

Discussion

<u>Q1</u>: Is every vector space spanned by a finite set of vectors?

 $\mathbb{R}^n = span \{ \, ec{e}_1 \, , ec{e}_2 \, , \ldots \, , ec{e}_n \, \}$

 M_{mn} is spanned by all matrices that have a 1 as one of the entries and a 0 for all other entries

$$P_n = span\{1, x, x^2, x^3, ..., x^n\}$$

P is not spanned by any finite set of vectors

 $F(-\infty,\infty)$ is not spanned by any finite set of vectors

<u>A1</u>: NO! But in this section, we are going to focus on vectors spaces that ARE.

Discussion

<u>Q2</u>: If a vector space is spanned by a finite set of vectors, how can you find a spanning set?

<u>A2</u>:

- Start with any vector and look at its span
- If you end up with the vector space V, you're done
- If not, add in an additional vector and look at the span of the new set of vectors
- Eventually you will end up with a set of vectors that spans V as long as you keep adding in vectors that are not already in the span of the previous vectors Go over. Why for last bullet point comes later.

Results:

- 1) $span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} \subseteq span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n, \vec{v}_{n+1}\}$
- 2) $span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} = span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n, \vec{v}_{n+1}\}$ iff \vec{v}_{n+1} IS a linear combination of the others vectors
- 3) $span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} \not\subseteq span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n, \vec{v}_{n+1}\}$ iff \vec{v}_{n+1} IS NOT a linear combination of the others vectors

After the proofs, go over the idea of minimal spanning set and independence

Results:

1) $span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} \subseteq span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n, \vec{v}_{n+1}\}$

<u>Results</u>:

2) $span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} = span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n, \vec{v}_{n+1}\}$ iff \vec{v}_{n+1} IS a linear combination of the others vectors

<u>Results</u>:

3) $span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\} \not\subseteq span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n, \vec{v}_{n+1}\}$ iff \vec{v}_{n+1} IS NOT a linear combination of the others vectors

<u>Def</u>: A set of vectors { $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } in a vector space V is called <u>linearly</u> independent if the only linear combination of them that results in the zero vector must have all of its coefficients equal to 0. That is...

If $\exists c_1, c_2, \dots c_n \in \mathbb{R}$ such that $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = \vec{0}$, then $c_1 = c_2 = \dots = c_n = 0.$

Otherwise, if $\exists c_1, c_2, ..., c_n \in \mathbb{R}$ that are not all 0, such that $c_1 \vec{v_1} + c_2 \vec{v_2} + \cdots + c_n \vec{v_n} = \vec{0}$, then the vectors $\{\vec{v_1}, \vec{v_2}, ..., \vec{v_n}\}$ are <u>linearly</u> <u>dependent</u>, or <u>not linearly independent</u>.

If the vectors { $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } are linearly independent, then the following are equivalent ...

1) <u>Def</u>: If $\exists c_1, c_2, \dots c_n \in \mathbb{R}$ such that $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = \vec{0}$, then $c_1 = c_2 = \dots = c_n = 0.$

(This is what we will use when showing that a set of vectors IS linearly independent)

- 2) None of these vectors is a linear combination of the others
- 3) Different linear combinations of these vectors produce different vectors

(Or equivalently from the book: Each vector in $span\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ has a unique representation as a linear combination of the vectors in $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$)

If the vectors { $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } are linearly independent, then the following are equivalent ...

1) <u>Def</u>: If $\exists c_1, c_2, \dots c_n \in \mathbb{R}$ such that $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = \vec{0}$, then $c_1 = c_2 = \dots = c_n = 0$.

2) None of these vectors is a linear combination of the others <u>Proof 1 \rightarrow 2:</u>

If the vectors { $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } are linearly independent, then the following are equivalent ...

1) <u>Def</u>: If $\exists c_1, c_2, \dots c_n \in \mathbb{R}$ such that $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = \vec{0}$, then $c_1 = c_2 = \dots = c_n = 0$.

2) None of these vectors is a linear combination of the others <u>Proof $2 \rightarrow 1$ </u>:

If the vectors { $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } are linearly independent, then the following are equivalent ...

1) <u>Def</u>: If $\exists c_1, c_2, \dots c_n \in \mathbb{R}$ such that $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = \vec{0}$, then $c_1 = c_2 = \dots = c_n = 0$.

3) Different linear combinations of these vectors produce different vectors <u>Proof 1 \rightarrow 3:</u>

If the vectors { $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } are linearly independent, then the following are equivalent ...

1) <u>Def</u>: If $\exists c_1, c_2, \dots c_n \in \mathbb{R}$ such that $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = \vec{0}$, then $c_1 = c_2 = \dots = c_n = 0$.

3) Different linear combinations of these vectors produce different vectors <u>Proof $3 \rightarrow 1$ </u>:

To prove that the vectors { $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } are linearly independent...

- 1) Set up the equation $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = \vec{0}$
- 2) Solve for the constants $c_1, c_2, ..., c_n$
- 3) If the only solution is that all the constants are 0, then the vectors are linearly independent

To prove that the vectors { $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } are linearly dependent... 1) Find constants $c_1, c_2, ..., c_n$ that are not all 0 such that

 $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n = \vec{0}$

Ex 1a: Are the following vectors linearly independent?

a) (1, 2, 3, 4), (2, 5, 0, -1), (1, 1, 3, 0)

Note About Systems of Linear Equations and Matrix Equations

 $\begin{array}{l} ax_1 + bx_2 = e \\ cx_1 + dx_2 = f \end{array} \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix} \quad x_1 \begin{bmatrix} a \\ c \end{bmatrix} + x_2 \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix}$

Are all equivalent!

<u>Thm 5.2.2 (part 1)</u>: Let $\vec{c}_1, \vec{c}_2, ..., \vec{c}_n$ be vectors in \mathbb{R}^m and let $A = [\vec{c}_1 \ \vec{c}_2 \ ... \ \vec{c}_n]$. Then $\vec{c}_1, \vec{c}_2, ..., \vec{c}_n$ are linearly independent iff the system of equations $A\vec{x} = \vec{0}$ only has the trivial solution $\vec{x} = \vec{0} \in \mathbb{R}^n$.

I.e. To see if a bunch of vectors in \mathbb{R}^m are linearly independent,

- 1) make these vectors the columns of a matrix A
- 2) then solve the system $A\vec{x} = \vec{0}$
- 3) row reduce the augmented matrix $[A|\vec{0}]$
- 4) the vectors are linearly independent if there is a leading 1 in every column (on the left of the augmentation line). Otherwise, they aren't.

Ex 1b: Are the following vectors linearly independent?

b) (2, 4, 0, -5), (3, -4, 2, 2), (1, 12, -2, -12)

Ex 2a: Show that { 1 + x, $3x + x^2$, $2 + x - x^2$ } is a linearly independent set of vectors in P_2

Ex 2b: Show that $\{1 + 3x + x^2, 5 - 2x^2, 3 + x, 1\}$ is a linearly dependent set in P_2

IndependenceEx 3: Show that $\left\{ \begin{bmatrix} 4 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}, \begin{bmatrix} 0 & 4 \\ 0 & 10 \end{bmatrix} \right\}$ is a linearly dependent set in M_{22}

Ex 4a: Show that $\{\sin x, \cos x\}$ is a linearly independent set of vectors in $F[0,2\pi]$ of all functions defined on $[0,2\pi]$

<u>Ex 4b</u>: Show that $\{\sin^2 x, \cos^2 x, 1\}$ is a linearly dependent set of vectors in $F[0,2\pi]$ of all functions defined on $[0,2\pi]$

<u>Ex 5</u>: Show that $\{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ is a linearly independent set of vectors in \mathbb{R}^n

<u>Ex 6</u>: Show that $\vec{0}$ cannot belong to any linearly independent set of vectors.

<u>Def</u>: A set of vectors { \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_n } in a vector space V is a <u>basis</u> for V if...

1) { $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } is linearly independent and 2) span{ $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } = *V*

Thm 6.3.2 (Fundamental Theorem):

If $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_m\}$ is a finite linearly independent set of vectors of V and $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$ is a finite set of vectors that spans V then $m \leq n$.

Thm 6.3.2 (Fundamental Theorem):

If $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_m\}$ is a finite linearly independent set of vectors of Vand $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$ is a finite set of vectors that spans Vthen $m \leq n$.

Proof (continued):

Theorem 6.3.3: Invariance Theorem

Let $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ and $\{\mathbf{f}_1, \mathbf{f}_2, \ldots, \mathbf{f}_m\}$ be two bases of a vector space *V*. Then n = m.

<u>Def</u>: If { $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ } is a basis for a vector space *V*, the number *n* of vectors in the basis is called the <u>dimension</u> of the vector space *V*.

Notation: $\dim V = n$ Why does this definition make sense?

<u>Note</u>: The zero vector space $\{\vec{0}\}$ is defined to have dimension 0 and a basis for the zero vector space $\{\vec{0}\}$ is defined to be the empty set \emptyset

<u>Ex 7a</u>: Because $\{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ is linearly independent and spans \mathbb{R}^n , $\{\vec{e}_1, \vec{e}_2, ..., \vec{e}_n\}$ is a basis for \mathbb{R}^n (called the standard basis for \mathbb{R}^n) and dim $\mathbb{R}^n = n$

<u>Ex 7b</u>: The set of all matrices that have a 1 as one of the entries and a 0 for all other entries is a basis for M_{mn} (this is the standard basis for M_{mn}) and dim $M_{mn} = mn$

<u>Ex 7c</u>: The standard basis for P_n is $\{1, x, x^2, x^3, ..., x^n\}$ and dim $P_n = n + 1$

<u>Results</u>: Suppose vector space V has finite dimension n.

1) Any linearly independent set of vectors $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ $(k \le n)$ can be enlarged to a basis of V Discussion / Proof

<u>Results</u>: Suppose vector space V has finite dimension n.

2) Any finite spanning set of vectors $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_k\}$ $(k \ge n)$ can be reduced to a basis of V Discussion / Proof

<u>Results</u>: Suppose vector space V has finite dimension n.

3) $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ is linearly independent iff $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ spans V Discussion emphasize number of vectors / Proof

Basis for \mathbb{R}^n Theorem

Theorem 5.2.3

The following are equivalent for an $n \times n$ matrix A

- 1. A is invertible.
- 2. The columns of A are linearly independent.
- 3. The columns of A span \mathbb{R}^n .
- 4. The rows of A are linearly independent.
- 5. The rows of A span the set of all $1 \times n$ rows.

Discussion / Proof

<u>Ex 8</u>: Show that (1, 4, 1), (9, -2, -3), (-3, -1, 0) are linearly independent and span \mathbb{R}^3 . det = 18

Enlarging a Set to a Basis <u>Ex 9</u>: Extend $\{\vec{v}_1, \vec{v}_2\}$ where $\vec{v}_1 = (1,4,0,-1)$ and $\vec{v}_2 = (2,1,3,1)$ to a basis of \mathbb{R}^4 . Enlarging a Set to a Basis <u>Ex 10</u>: Enlarge the independent set $D = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \right\}$ to a basis of M_{22} .

Enlarging a Set to a Basis

<u>Ex 11</u>: Find a basis of P_3 containing the independent set $\{1 + x, 1 + x^2\}$.

Reducing a Set to a Basis

<u>Ex 12</u>: Find a basis and calculate the dimension of $span\{(-1,2,1,0), (2,0,3,-1), (4,4,11,-3), (3,-2,2,-1)\}$

Defer to Section 5.4 Lecture

Reducing a Set to a Basis

Ex 13: Find a basis of P_3 in the spanning set {1, $x + x^2$, $2x - 3x^2$, $1 + 3x - 2x^2$, x^3 }

Defer to Section 5.4 Lecture

Basis and Dimension of Subspaces

 $\underline{Ex 14}$: Find a basis and calculate the dimension of

$$U = \left\{ \begin{bmatrix} a \\ a+3b \\ a-b \\ 2b \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

Basis and Dimension of Subspaces <u>Ex 15</u>: Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and consider the subspace $U = \{ X \in M_{22} \mid AX = XA \}.$

Show that dim U = 2 and find a basis for U.

Basis and Dimension of Subspaces

Ex 16: Show that the set V of all symmetric 2×2 matrices is a vector space and find its dimension.

Basis and Dimension of Subspaces

<u>Ex 17</u>: Let V be the space of all 2×2 symmetric matrices. Find a basis of V consisting of invertible matrices.

<u>Result</u>: Let V be a vector space of dimension n and let U be a subspace of V. Then...

1) dim $U \leq n$

```
2) If dim U = n, then U = V.

<u>Proof</u>:
```

What you need to know from the book

Book reading

Section 5.2 pages 271 - 279 Section 6.3 pages 345 - 351 Section 6.4 pages 354 - 360

Problems you need to know how to do from the book

Section 5.2 page 280 #'s 1 - 20 Section 6.3 page 351 #'s 1 - 37 Section 6.4 page 361 #'s 1 - 26